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Summary. We show that atomic natural orbitals are an excellent way to contract 
transition-metal basis sets, even though the different low-lying electronic states 
may have very different basis set requirements. 
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1 Introduction 

Natural  spin orbitals, the eigenfunctions of  the one-electron density operator, 
and the corresponding natural orbitals (NOs), obtained from the spin-averaged 
density, were introduced by L6wdin in 1955 [1]. Since the determination of NOs 
from configuration interaction (CI) wave functions requires very little time, it is 
common to obtain the NOs to help interpret the nature of  the bonding in 
molecules. In addition, as addressed by L6wdin, the NOs provide a more rapidly 
convergent CI expansion, under certain circumstances, than other sets of  or- 
bitals. That  is, truncation of  the NO set used to expand the CI wave function 
leads to smaller errors than truncation of  other molecular orbital (MO) sets, 
such as self-consistent field (SCF) MOs, for example [2]. While this observation 
is most  pertinent to the two-electron case, many-electron systems show the same 
advantageous convergence of NO-based expansions in practice. We note that 
associated with each NO is an occupa t ion  n u m b e r  that is a direct measure of  its 
importance in the density. The natural orbital occupation numbers thus supply 
a guide to the contribution of a given NO to the CI wave function, providing a 
convenient truncation mechanism: eliminating NOs with the smallest occupation 
numbers. This approach converges much better than, say, truncating an SCF 
MO space by eliminating orbitals on the basis of  their orbital energy, and is 
simply a result of  the NOs being determined for the correlation problem that is 
being solved, while the SCF orbitals are optimized for a different problem. 
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USA 
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NO expansions were commonly used for truncating the orbital space in 
conventional CI calculations. For example, NOs could be obtained for a CI 
calculation using all the SCF MOs, but with a limited set of reference configura- 
tions. Then a CI calculation with a larger set of reference configurations, but 
using a truncated set of the NOs, was performed [2]. While this approach works 
well, it still requires the s c F  and initial CI calculations to be performed in the 
full basis set. If  accurate results were desired, large atomic basis sets would be 
necessary, and hence the SCF and initial CI calculations would be rather 
expensive. However, the convergence properties of  the NOs can provide a 
solution to this problem as well. If  the NOs from an atomic calculation, atomic 
natural orbitals (ANOs), are used to contract a set of primitive Gaussian 
functions, instead of the more conventional atomic SCF-based schemes, a 
compact contracted basis can be generated for each atom [3]. Using these ANOs 
in the molecular calculation results in less computational effort, since the basis 
sets are optimized with the correlation problem in mind. Hence the requirement 
of performing an initial CI calculation, to determine the optimal basis set for the 
accurate CI calculation, can be avoided. In addition, since the contraction is 
performed as the first step, very large, nearly complete, primitive basis sets can 
be used. Experience has shown that this is indeed an excellent way to contract 
basis sets [4, 5]. 

One limitation of the ANO approach is that the contraction is based only on 
the correlation energy. Some one-electron properties require additional flexibility 
in the outer regions of the wave function and therefore it is often desirable to 
uncontract the outermost primitive functions [6-8]. Another problem arises where 
several atomic or ionic states of different character make similar contributions to 
the molecular wave function. If  basis set contraction is performed for a single state 
of the atom, the ANO basis set may be biased towards that state. One way of 
reducing this bias is to obtain the ANOs from an average over several states. For  
example, in ionic halide compounds the halogen basis could be obtained by 
averaging over the neutral and negative ion ground states [9]. This approach has 
been generalized by Widmark and co-workers to include averaging over atomic 
states perturbed by an applied electric field as well as various neutral, cationic and 
anionic states [10, 11]. Perhaps the most challenging application of techniques of 
this sort is to the determination of  transition metal ANO basis sets, since here 
different electronic states have very different orbital character [12]. 

In the next section we discuss some general aspects of our computational 
methodology, including the density matrix averaging procedure. In Sect. 3 we 
present results for the nickel atom, and in Sect. 4 results for titanium and the 
molecule Till .  Our conclusions are given in Sect. 5. 

2 Methods 

In this section we describe only those methodological considerations that are 
common to all the calculations presented in this work. Specific details of 
primitive basis sets and electronic structure methods are given in later sections. 

Several different types of density matrix averaging are performed in this 
work, and we will distinguish between the approaches here. First, for degenerate 
states of atoms and molecules we apply an averaging procedure to all individual 
density matrices to ensure that the orbitals, at every stage of the calculation, 
display full symmetry and equivalence restrictions [13]. This corresponds to 
projecting out the totally symmetric component of the density matrix [14]. We 
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will henceforth assume that this symmetrization is always performed, and will 
not discuss it further. More important here is the averaging of several density 
matrices, to obtain averaged natural orbitals as the eigenvectors of the resulting 
matrix. Since the primitive atomic basis is not orthonormal, it is necessary to 
express the matrices to be averaged in some common orthonormal basis. If  a 
single SCF or complete-active-space SCF (CASSCF) calculation is performed 
initially and followed by different CI calculations on different electronic states, 
the CI density matrices can simply be expressed in the SCF or CASSCF orbital 
basis. By performing state-averaged SCF or CASSCF calculations a suitable 
common orbital set can be determined. However, in some cases it is necessary or 
desirable to perform independent SCF/CASSCF/CI calculations on the different 
states. In such cases we express the density matrices in the symmetrically 
orthonormalized atomic basis before averaging and diagonalizing. While it 
would be possible to weight the various density matrices used in the averaging 
differently, we have used equal weights throughout this work. 

For systems as heavy as the first transition row, relativistic effects on energies 
and state separations are far from negligible. In this work we estimate these 
effects using first-order perturbation theory [15], identifying such results through- 
out as "corrected for relativity" and denoting the correction by + R. 

All calculations reported here were performed with the MOLECULE-  
SWEDEN program system [16] on the CRAY Y-MP/864 at the NASA Ames 
Central Computing Facility. 

3 Separations in Ni atom 

The 3F(3d84s2) and 3D(3d94s 1) states of Ni are very close (0.03 eV) in energy 
[17], and experience has shown that both can contribute to the bonding in the 
ground and low-lying states of molecules containing Ni. One example is NiH 
[18], where the bonding arises from a mixture of both atomic asymptotes. The 
experimental determination of the dipole moment of the ground state can be 
viewed as confirmation of this mixed character of  the bonding - see the discus- 
sion in Ref. [18]. Even the 1S(3d1°) state, which lies 1.70 eV above the ground 
state, has been shown to contribute strongly to the bonding of  Ni-containing 
compounds, especially those with dative bonding such as Ni(CO)4 [19]. With 
differing numbers of 3d electrons, it is not surprising to find that the 3d orbitals 
in these states have different ( r )  values: 0.965, 1.050, and 1.169 a0 for the 3F, 3D, 
and 1S states, respectively. This difference in radial extent will naturally require 
different basis functions to describe the different states to equal accuracy [20]; 
treating these three states equivalently is important, because the bonding can 
arise from any of these three atomic states, or a combination of them. Also while 
a flexible basis set is required, it must still be compact enough for use in 
molecular calculations. In this work we focus on achieving the goal of treating 
the three states equivalently using a compact basis set. We compare the results in 
the contracted basis sets with those in the uncontracted basis set, not with 
experiment, because while our correlation treatments are expected to supply 
stringent tests of  the basis set contraction, they are not sufficiently accurate to 
compare with experiment. 

All of the contracted basis sets in this section are derived from the same 
(20s 15p 10d 6f)  primitive set [21], obtained as follows. To the (20s 12p 9d) set 
optimized for the 3F(3d84s 2) state of Ni, three even-tempered p functions 
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(extended outward from the outermost original p function with a ratio of 2.5) 
are added to describe the 4p orbital and for correlation of the 4s orbital. A 
diffuse even-tempered 3d function, obtained again by dividing the outermost 
original d exponent by 2.5, is added to improve the description of the 3D(3d94s 1) 
and 1S(3dl°) states. Six even-tempered f polarization functions, with exponents 
of the form 0.2024 x 2.5 n, for n = 0 to 5, are also added. The uncontracted basis 
set yields 3D - 3F and 1S - 3F separations that agree with numerical Hartree- 
Fock [22] to within 0.02 eV. 

The first calculations use the uncontracted basis set, but orbitals determined 
from four different zero-order calculations. We optimize the orbitals for the 3F 
state using the SCF and CASSCF approaches. The CASSCF has the 4s and 4p 
orbitals in the active space to account for the well-known near-degeneracy. The 
orbitals are optimized for the 3D and 1S states using only the SCF approach. 
Using these four sets of orbitals a CI calculation is performed; a single reference 
SDCI calculation for the 3D and 1S states and an MRCI calculation for the 3 F  

state. The four references in the MRCI correspond to the 3d84s 2 and three 
components of the 3d84p 2 occupations. These calculations are summarized in 
Table l. The first set is for the case where each state is treated using the orbitals 
optimized for that state; these are clearly the best results for this level of theory. 
The second set of entries uses the orbitals from the SCF treatment of the 3F 
state. The orbital bias is evident in the results. The separations are a factor of 
two too large. This is expected since the ( r )  values for the 3F state is significantly 

Table 1. N i  ca lcula t ions  us ing the full basis  set. The M R C I  t r ea tment  is 
used for the 3F state,  while  the 3D and  1S states  are t rea ted  us ing the 

S D C I  a p p r o a c h  see the text  

State Energy  (Eh) Separa t ion  (eV) 

Each  state descr ibed wi th  its own orbi ta ls  a 
3F(3d84s2) - 1507.189 319 

3D(3d94sl) - 1507.176 406 0.351 

1S(3d1°) - 1507.091 797 2.654 

The orbi ta ls  are t aken  f rom the SCF  ca lcu la t ion  for 3F(3d84s 2) 
3F(3dS4s z) -- 1507.179 012 

3D(3d94s 1) -- 1507.151 211 0.757 

1S(3d1°) - 1506.983 626 5.317 

The orbi ta ls  are t aken  f rom the C A S S C F  ca lcu la t ion  for 3F(3d84s 2) 
3F(3d84s2) - 1507.189 319 

3D(3d94s 1) - 1507.151 452 1.030 
1S(3d w) - 1506.982 743 5.621 

The  orbi ta ls  are t aken  f rom the SCF ca lcu la t ion  for 3D(3d94s l) 
3F(3d84s 2) - 1507.142 122 

3D(3d94s 1) -- 1507.176 406 -- 0.933 

1S(3d1°) -- 1507.057 381 2.306 

The orbi ta ls  are t aken  f rom the SCF  ca lcu la t ion  for 1S(3d1°) 
3F(3d84s 2) - 1507.012 871 
3D(3d94s 1) -- 1507.101 495 --2.412 

1S(3d1°) - 1507.091 797 - 2 . 1 4 8  

a The C A S S C F  orbi ta ls  are used for the 3F s ta te  
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smaller than for the other states. The 1S state with the largest ( r )  value has a 
much larger error than the 3D state. Using the CASSCF orbitals from the 3F 
state does not significantly affect the results; as can be seen from the total 
energies, the biggest effect is to improve the description of 3F state, rather than 
further degrade the 3D o r  1S state. That  is the CASSCF orbitals describe the 4s 2 
to 4p 2 excitation better and hence lower the energy of the 3F state rather than 
affecting the size of the 3d orbitals. Using the SCF orbitals from the 3D state 
yields a 3 F -  I S  separation in very good agreement with separate state optimiza- 
tions, because it degrades the description of the 3F and 1S states equally. 
However, it results in a 3D state that is significantly too low relative to the 3F and 
1S states. Using the 1S SCF orbitals is also clearly unacceptable; the 3 F  state is 
the highest in energy rather than the lowest. 
This series of calculations using the uncontracted basis set shows how the very 

different radial extents of the 3d orbitals can result in a strong bias against the 
other states. Because the uncontracted primitive basis is used, in the limit of  a 
full CI the correlation treatment must eliminate the effects of this bias. However, 
a contraction scheme must not introduce any orbital bias into the contraction, 
because no level of correlation treatment will subsequently be able to overcome 
this bias. 
The calculation of  the polarizability of the 3F state is summarized in Table 2. It 

is important to obtain an accurate polarizability to be able to describe the 
distortion that occurs in molecules. We consider only the 3F state, but similar 
effects are expected for the 3D state. We use only the SCF/SDCI treatment. The 
first entry in the table is for the uncontracted basis set. The first contraction is 
based on the NOs of the MRCI treatment of the 3F state; the natural orbital 
occupation numbers are used to identify a [6s 5p 3d 2f] set. The contracted basis 
set recovers 93.4% of  the correlation energy from the full basis set, but only 
71.5% and 75.3% of the polarizability at the SCF and CI levels, respectively. 
Uncontracting the outermost s and p pr imit ives-  denoted (6-t-1)s and 
(5 + l)p - yields a significant improvement in the results. Adding an additional 

Table 2. Calculation of  the polarizability of  the 3F(3d84s2) state of  N P  

Contraction b Basis c Energy (Eh) o: (a 3) 

SCF CI SCF CI 

uncontracted (20s 15p 10d 6f)  - 1506.873 290 - 1507.180 768 64.62 52.08 
3F MRCI  NOs [6s 5p 3d 2f] - 1506.872 939 - 1507.166 789 46.23 39.24 
3F MRCI  NOs [(6+l)s(5+l)p4d2f] -1506 .873260  -1507 .170094  63.79 49.80 
3F M R C I  NOs [(6 + 1)s (5 + 1)p 4d 3f] - 1506.873 269 - 1507.175 874 63.79 49.92 
3F M R C I  NOs [(6 + 2)s (5 + 2)p 4d 2f] - 1506.873 260 -- 1507.170 537 64.56 50.66 
3F MRCI  NOs [(6 + 2)s (5 + 2)p (3 + 1)d 2f] - 1506.873 216 - 1507.168 024 64.50 51.48 
3F MRCI  NOs [(6 + 2)s (5 + 2)p (4 + l)d 2f] - 1506.873 264 - 1507.170 758 64.58 51.64 
3F M R C I  NOs [(6+2)s(5+2)p(4+l)d3f] -1506 .873273  -1507 .176658  64.59 51.74 
Average NOs [6s 5p 4d 2f] -1506.873 128 -1507.168 320 41.27 36.75 
Average NOs [(6 + 1)s (5 + l)p 4d 2f] - 1506.873 147 - 1507.168 776 63.06 50.03 

a The polarizability is computed for the 3Al[3d(~z)13d(x2-y2)l] 
SCF/SDCI approach 
b Origin of the contraction coefficients 
c All basis sets use the (20s 15p 10d 6f)  primitive set 

component  of  the 3F state using an 
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contracted f function lowers the CI energy, but has only a small effect on e. 
Uncontracting a second s and p primitive makes only a small improvement. 

Replacing the four 3d ANOs by the (3 + 1)d set, in which the outermost d 
primitive is uncontracted, improves c~, but the total energy at the CI level is 
significantly degraded. Uncontracting the outermost d primitive from the 4d set, 
i.e., forming the (4 + 1)d set, improves the polarizability by somewhat more than 
the (3 + 1)d set, and does so without the loss of correlation energy. Adding the 
third f ANO has the same small effect that was observed for the smaller 
contracted set. 

Table 3. C o m p a r i s o n  of  to ta l  energies and  separa t ion  for the 3F, 3D, and  IS states  for Ni  as a 

function of  method of  contracting the basis  set a 

Energy (Eh) Separa t io~  (eV) b 

SCF CI  SCF  CI  

Uncontracted basis set 
3F(3d84s2) -- 1506.908 118 - 1507.189 319 
3D(3d94s I) - 1506.823 313 -- 1507.176 406 2.308 

1S(3d 1°) - 1506.669 000 - 1507.091 797 6.507 

[(6 + 1)s (5 + 1)p 4d  2f]  f rom the C A S S C F / M R C I  3F(3d84s2) ca lcu la t ion  

3F(3dS4s2) - 1506.908 111 - 1507.178 670 

3D(3d94sl) - 1506.822 917 - 1507.164 870 2.318 

1S(3d1°) -1506 .661  504 -1507 .071  546 6.711 

[(6 + 1)s (5 + 1)p 4d  2f]  f rom the S C F / S D C I  3F(3d84s 2) ca lcu la t ion  

3F(3d84s2) - 1506.908 088 - 1507.178 363 

3D(3d94s1) - 1506.823 058 -- 1507.164 937 2.314 

1S(3d1°) - 1506.663 581 -- 1507.074 082 6.653 

[(6 + 1)s (5 + 1)p 4d 2f]  f rom the S C F / S D C I  3D(3d94s l) ca lcu la t ion  
3F( 3d84s 2) -- 1506.907 539 - 1507.177 747 

3D(3d94s l) -- 1506.823 279 - 1507.165 592 2.293 

1S(3dlO) - 1506.666 630 - 1507.078 036 6.556 

[(6 + 1)s (5 + 1)p 4d  2f]  f rom the S C F / S D C I  ~S(3d l°) ca lcu la t ion  
3F(3dS4s 2) - 1506.885 045 -- 1507.156 254 

3D(3d94s1) -- 1506.815 160 - 1507.157 142 1.902 

IS(3d1°) - 1506.668 877 - 1507.082 629 5.882 

[(6 + 1)s (5 + 1)p 4d  2f]  f rom the average of  3F, 3D and  IS 

0.351 (0.397) 
2.654 (0.597) 

0.376 

0.915 

0.365 

2.838 

0.331 

2.713 

- 0.024 

2.003 

3F(3d84s2) - 1506.907 896 - 1507.177 175 

3D(3d94s1) - 1506.823 226 - 1507.164 583 2.304 0.343 (0.602) 

aS(3d~°) - 1506.668 959 - 1507.081 033 6.502 2.616 (1.044) 

[(6 + 2)s (5 + 2)p (4 + 1)d 2) 2] f rom the average of  3F, 3D and  1S 

3F(3da4s2) - 1506.908 048 - 1507.178 510 

3D(3d94sl) - 1506.823 285 - 1507.165 665 2.307 0.350 (0.525) 

aS(3d a°) -- 1506.668 980 - 1507.081 973 6.505 2.627 (0.903) 

[(4 + 3)s (2 + 4)p ( 1 + 4)d 3f]  f rom the SCF for 3D 
3F(3da4s2) - 1506.908 057 -- 1507.174 933 
3D(3d94s 1) -- 1506.823 231 -- 1507.162 227 2.308 0.346 (0.454) 

1S(3dl°)  - 1506.668 867 - 1507.078 226 6.509 2.632 (0.713) 

a Fo r  al l  basis  sets, the C A S S C F / M R C I  t r ea tmen t  is used for the 3F state,  while the S C F / S D C I  is 
used for the 3D and  IS  s ta tes  

b The values  in parentheses are the relativistic contributions to the separa t ion  
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Using the occupation numbers as a guide gives a [6s 5p 4d 2f] contracted set 
when an average of the 3F, 3D and 1S states is used. It is probably not surprising 
that to account for the different size of the 3d orbitals, the average set has one 
more contracted d function than the NOs from the 3F state. The polarizability 
using these average NOs is even worse than with those from the 3F state. 
However, if the outermost s and p primitive functions are uncontracted, the 
polarizability is as accurate as that for the same sized set contracted based only 
on the 3F state. Thus averaging has not adversely affected the flexibility of the 
basis set. Uncontracting additional diffuse functions for the average NOs will 
have a very similar effect to that found for the orbitals derived from the 3F state. 

In Table 3 we consider the separation between the three states using different 
sets of contracted orbitals. In all cases we uncontract at least one s and one p 
function, based on the results for c~. The first set of entries is for the uncontracted 
basis set where each state is described in terms of its own orbitals. The next four 
sets use the MRCI and SDCI NOs from the 3F state and the SDCI NOs from 
the ~D and 1S states for the contraction. As expected, using the NOs from one 
state degrades the description of the others; this is evident even at the SCF level. 
The average NOs result in separations that are in very good agreement with the 
uncontracted basis set. Uncontracting a second s and p primitive as well as one 
d primitive makes only a small change in the results. The last entry is a general 
contraction based on the SCF wave function for the 3D state. While this basis set 
is larger than those using the average NOs, it yields less correlation energy. It 
does, however, produce separations that are in good agreement with the uncon- 
tracted results. Given that the SCF-based contraction results in a larger basis set, 
with results that are not superior to the average NOs, the average NOs appear 
to be a better approach here. 

One additional aspect of basis set contraction that we consider is the 
relativistic contribution to the separation. This is also given in Table 3. The 
results in the [(6 + 1)s (5 + 1)/9 4d 2f] average set are in poor agreement with the 
uncontracted basis set. Uncontracting an additional s, p, and d function im- 
proves the calculation of the relativistic contribution to the separation, but the 
agreement is still not acceptable. The SCF-based contraction is superior to either 
set of average NOs, but it still has an error of more than 0.1 eV for the 3F - 1S 
separation. It is clear that an even more flexible contraction is required to 
compute this quantity accurately [23]. Unfortunately this results in basis sets that 
may be too large for molecular calculations. It is clear that more study is 
required on the contraction required to accurately compute the relativistic 
contribution, and caution will be necessary when estimating the + R correction. 

4 Ti atom and Til l  

Good performance of a basis set for atomic calculations is a necessary, but not 
sufficient, condition for good performance in molecular calculations. The spec- 
troscopic constants and properties of the lowest 4q~ and 2A states of Ti l l  provide 
a simple but comprehensive example of contraction for molecular calculations. It 
is convenient to illustrate some points using contraction results for Ti atom, and 
these are displayed in Table 4. 

All calculations were performed using the same primitive atomic basis set. 
This is Partridge's (21s 13p 8d) set [21], augmented with three diffuse p func- 
tions, two diffuse d functions, and s i x f  functions. The diffuse function exponents 
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Table 4. Ti atom MRCI calculations. Each state is individually optimized at the CASSCF/MRCI 
level 

State MRCI MRCI + R MRCI MRCI + R 
Energy (Eh) Energy (Eh) Separation (cm 1) Separation (cm - I )  

Uncontracted basis 
3F(3d24s2) -848.462 123 -852.760 480 
5F(3d34sl) -848.427 318 -852.720 303 7639 8818 
5D(3d 4) --848.323 807 --852.613 838 30 357 32 184 

[7s 6p 4d 2f] basis from the average of 3F, 5F, and 5D 
3F(3d24s2) -848.461 550 --852.749 315 
5F(3d34s 1) -848.426 135 -852.713 485 7773 7864 
5D(3d4) --848.316 285 --852.590 784 31 882 34 793 

[(6 + 1)s (5 + 1)p (3 + 1)d 2f] basis from the average of 3F and 5F 
3F(3d24s 2) --848.460 676 --852.748 152 
5F(3d34sl) -848.425 972 -852.706 987 7617 9035 
5D(3d4) -848.322 528, -852.597 188 30 320 33 133 

[(5 + 1)s (4 + l)p (2 + 1)d l f ]  basis from the average of 3F and 5F 
3F(3d24s2) --848.455 492 -852.742 706 
5F(3d34s 1) -848.418 503 --852.699 576 8118 9466 
5D(3d 4) --848.316 553 -852.591 049 30 494 33 285 

were obtained as an even-tempered extension from the smallest original expo- 
nent, with a successive ratio of  2.5. The f functions form an even-tempered 
sequence of the form 0.056 × 2.5 n, for n = 0 to 5. By extension from the Ni case, 
one contraction strategy would be to obtain averaged natural orbitals for the 
lowest states of  the three occupations 3d24s 2, 3d34s l, and 3d 4, namely, 3F, 5F, 
and 5D, respectively. The contraction errors for a [7s 6p 4 d 2 f ]  ANO set 
obtained this way are shown in Table 4. The wave functions are obtained from 
separate CASSCF and MRCI calculations on each electronic state. Four  elec- 
trons are active in the CASSCF, and all CASSCF configurations are used as 
references in a four-electron MRCI calculation. 

Clearly, the contraction procedure yields a very good description of the 
3d24s 2 and 3d34s 1 occupations: the contraction errors in the total energy of the 
3F and 5F states are around 1 mEh. However, the contraction error in the 5D 
state energy is almost an order of magnitude larger. This error is very evident in 
the MRCI energy differences given in the table. The 3 F -  5D separation is in 
error by more than 1000 cm-1. While this error could be reduced by including 
more ANOs in the basis set, the resulting basis would become too large for 
convenient use in molecules. The problem is again that the d NOs for the 3d 4 
occupation are much more diffuse than for the other occupations, and the 
averaged orbitals are simply not diffuse enough. Further, the major correlation 
effect in the 5D state is 3 d -  3d' radial correlation, and hence the correlating d 
NOs for this state also need to be more diffuse. Diffuse p functions also 
contribute because of 3d 2 -  4p 2 excitations. 

Given the need to provide more flexibility for the diffuse part of the 5D wave 
function, an alternative is again to uncontract the outermost primitive functions. 
When this is done there is no need to include the 3d 4 occupation in the 
averaging, and the contraction coefficients can be obtained from an average over 
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the 3F and 5F states only. Results are given for a [(6 + 1)s (5 + 1)p ,(3 + 1)d 2f] 
basis obtained in this way. Inspection of the results of Table 4 reveals that this 
set provides a much more balanced description of the three occupations. The 
contraction errors in the total energy are somewhat larger than previously 
obtained for the 3F and 5F states, but much smaller for the 5D state. The state 
separations are now in very good agreement with the uncontracted results. We 
can in fact delete the most weakly occupied ANO of each symmetry and still 
obtain fairly good energies from the resulting [(5+ 1)s (4+  1)p(2+ 1)d lf] 
contracted basis. 

Relativistic contributions to the total energies and state separations are also 
given in Table 4. As in the Ni case, the contraction error in this contribution is 
large for all of the contracted sets. The error is especially large for the orbitals 
obtained by averaging all three states, but none of the contracted sel;s produce a 
satisfactory result. It is again clear that more work is needed in how to generate 
contracted sets that satisfy our criteria for the nonrelativistic contraction errors 
and also yield acceptable relativistic corrections. 

One other aspect of the Ti atom calculations may be of interest. In Table 5 
we list results obtained by performing a state-averaged CASSCF calculation on 
the three electronic states of interest, and then MRCI calculations on these 
states. That is, all three states are expanded in the same set of CASSCF orbitals. 
This is generally a cheaper and simpler option than state-specific optimizations. 
As the table shows, the error in the CI state separations from the state-averaging 
varies somewhat from basis to basis: in effect, the contraction error observed is 
somewhat different when state-averaged CASSCF orbitals are used in the MRCI 
calculations. In general, the contraction errors are somewhat smaller, when 
comparing the state-averaged CASSCF-based calculations among themselves, 
than in the state-specific case. However, the differences in both total energies and 
state separations between these treatments are small. 

Table 5. Ti atom MRCI calculations. Except as noted, a state-averaged CASSCF calculation is used 
to define orbitals for the MRCI calculations 

State MRCI MRCI + R MRCI MRCI + R 
Energy (Eh) Energy (Eh) Separation (cm -1) Separation (cm -1) 

Uncontracted basis, state-specific orbitals 
3F(3d24s2) -848.462 123 -852.760 480 
5F(3d34sl) -848.427 318 -852.720 303 7639 8818 
5D(3d 4) -848.323 807 --852.613 838 30 357 32 184 

Uncontracted basis 
3F(3d24s2) -848.457 180 -852.753 815 
5F(3d34s 1) -848.425 888 -852.719 767 6868 7473 
SD(3d4) --848.322 904 --852.614 614 29 470 30 551 

[(6 + 1)s (5 + 1)p (3 + 1)d 2f] basis from the average of 3F and 5F 
3F(3d24s 2) --848.455 787 --852.741 222 
5F(3d34sl) -848.424 571 -852.705 880 6851 7757 
5D(3d4) -848.321 740 -852.597 222 29 420 31 604 

[(5 + 1)s (4 + 1)p (2 + 1)d l f ]  basis from the average of 3F and 5F 
3F(3dZ4s 2) -848.450 364 -852.735 164 
5F(3d34sl) -848.417 152 -852.698 507 7289 8045 
5D(3d4) -848.316 535 -852.591 851 29 372 31 453 
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We now consider the 4~ and ZA states of the molecule Till .  The contracted 
basis sets for Ti are based on averaging independent calculations for the 3F and 
5F states, and uncontracting the outermost s, p, and d primitives, as described 
above. The H basis sets are contracted as described in Ref. [3]. The calculations 
were performed at ?'Till = 3.380 ao ( 4 ~ )  and ?'Till = 3.308 a0 ( 2 A ) .  Total energies 
and selected one-electron properties for both states are given in Table 6. The 
electronic wave functions are obtained from independent CASSCF/MRCI calcu- 
lations on each Ti l l  state: there are five active electrons in the CASSCF 
calculations and the MRC1 wave functions comprise all single and double 
excitations out of all CASSCF occupations, correlating the five valence electrons. 
The active orbital space for the 41~ state is denoted (6221), since it includes 6 al, 
2 b2, 2 bl, and 1 a2 orbitals. A (5111) active space is used for the 2A state. The 
choice of  active spaces is motivated by full CI benchmark calculations on this 
system, as described in detail by Bauschlicher [24]. The calculations were 
performed in C2~ symmetry, although full C~v symmetry and equivalence 
restriction were imposed on the MOs. 

The contraction errors for the nonrelativistic energies are small for both 
states. More importantly, the differential contraction error for the two states is 
very small, even in the smaller contracted set. The MRCI state separation is 

Table 6. T i l l  energies and  proper t ies  a 

41~ 2 A 

Uncon t r ac t ed  basis  

ECASSCF b - 8 4 9 . 0 1 0  445 - 8 4 8 . 9 8 0  892 

EMRC! - -  849.043 976 -- 849.031 469 

EMRCI+ R - -853 .340918  - -853 .329965  

T e ( M R C I )  2745 

T e ( M R C I  + R) 2404 

p ( M R C I )  - 0.858 - 0.598 

O ( M R C I )  ° - 5.618 - 2.370 

[(6 + 1)s (5 + 1)p (3 ÷ 1)d 2f/4s 3p 2d] basis  

ECASSCF b - 8 4 9 . 0 1 0  014 - 8 4 8 . 9 8 0  268 
EMRCI - -  849.042 109 -- 849.029 294 

EMRCI + R --853.326 746 --853.317 980 

T e ( M R C I )  2813 
Te ( M R C I  + R) 1924 

/~ ( M R C I )  - 0.860 - 0.599 
O ( M R C I )  c - 5.472 - 2.264 

[(5 + 1)s (4 + 1)p (2 + 1)d lf/3s 2p ld ]  basis  

ECASSCF b - -  849.008 548 - 848.979 457 

EMRCI -- 849.035 480 -- 849.022 680 

EMRCI+ R --853.319 909 --853.311 229 
Te ( M R C I )  2809 

T¢ ( M R C I  + R) 1905 
# ( M R C I )  - 0.881 - 0.636 

O ( M R C I )  ° - 5.253 -- 2.313 

a Energies  in E h, Te in cm -1,  # and  O in a.u. 
b C A S S C F  act ive space is (6221) for 4~/b and  (5111) for 2A 

( see  text) 
c Ti a t  or ig in  
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affected no more than 70 cm -1 by contraction, or about 2.5%. This is a very 
significant result, because, as discussed in detail in Ref. [24], the wave functions 
for the two states are very different: the 44 state arises from a mixture of the 
3d24s 2 and 3d34s 1 atomic occupations, while 2A arises mainly from the former. 
Hence the contracted basis sets appear to be capable of representing the 
contributions of different atomic states to the molecular wave function very well. 
The contraction errors in the relativistic energy contributions are again very  
l a rge -  not a surprising result since this quantity will be dominated by the Ti 
contribution. Further, there is a large differential error in the relativistic energies, 
which could also be expected in light of the atomic results. Thus the poor 
prediction of the contribution of relativistic effects to the atomic state separa- 
tions is also seen in the molecule. 

The dipole moments of the 44 and 2A states are rather different, and this 
difference is predicted rather well by the larger contracted basis. The smaller 
basis yields a significantly larger contraction error for the 2A state than for the 
44 state, and neither the absolute value of the dipole moments nor the difference 
between the two states is described well by this basis. The difference between the 
quadrupole moments of the two states (origin at Ti) is more than a factor of 
two, and is fairly well described by the larger contracted basis. However, a 
proper description of the quadrupole moment probably requires considerably 
more flexibility in the outermost region of the wave function than is available in 
the primitive set used here (see, e.g., Ref. [8]). Overall, the results show that the 
averaged ANOs provide a compact and effective basis set both for transition 
metal atom calculations and for calculations on molecules containing transition 
metals. This general approach has been used widely in our group for accurate 
calculations on transition-metal systems [4] (see also Refs. [25] and [26] and 
references therein). 

5 Conclusions 

The use of atomic natural orbitals obtained by averaging the one-particle density 
matrices over different transition-metal electronic states is shown to be a 
convenient route to compact, accurate transition-metal basis sets. It is possible to 
contract very large primitive sets to a manageable size in this way. Contraction 
errors in total energies, state separations, and atomic and molecular properties 
are all small. However, significant errors can arise in calculated relativistic energy 
contributions. This is not directly related to the use of ANOs, since atomic 
SCF-based general contractions also show the same phenomenon. Since simply 
uncontracting more primitives to try to correct this defect leads to basis sets that 
would be unmanageably large for most molecular calculations, the problem of 
reducing contraction error in the relativistic correction warrants further atten- 
tion. 
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